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Abstract
École polytechnique de Bruxelles

Centre for Quantum Information and Communication (QuIC)

Master en Ingénieur Civil Physicien

Shift basis distinguishability using time-delocalized realization of the Lugano
process

by Eliot Niedercorn

The process matrix formalism offers a description of quantum theory without a well-
defined causal structure, which could potentially have relevance for quantum gravity.
This formalism allows for the description of causally indefinite processes, with one no-
table example being the quantum switch, which has been experimentally realized and has
demonstrated computational advantages that are unreachable in situations with a definite
causal structure.

This thesis focuses on another causally indefinite process, known as the Lugano process,
which has been proven to achieve something impossible by quantum nonlocality without
entanglement (QNWE) in a situation with a well-defined causal order: the establishment
of a protocol using only local operations and classical communication (LOCC) that im-
plements a complete measurement of a set of unentangled orthogonal states called the
Shift basis.

The main objective of this master’s thesis is to investigate the implementation of this
protocol in a temporally ordered circuit established using a time-delocalized description
of the Lugano process, known as the Lugano circuit. The central research question focuses
on understanding how the ability of the Lugano process to achieve the LOCC Shift basis
measurement protocol manifests itself in the Lugano circuit.

Unitaries inspired by the protocol are devised and incorporated into the Lugano circuit,
resulting in a circuit which exhibits interesting properties that enable a complete mea-
surement of the Shift basis. A LOCC protocol is established using this result, allowing
for the distinction of the first six Shift states and the detection of the presence of the last
two without distinguishing between them.

To gain further insights, the Lugano circuit is converted into an acausal circuit using time-
delocalized subsystems, where the conceived unitaries are inserted. This computation
aims to identify the fundamental step that corresponds to the trade-off between complete
distinguishability under LOCC and indefinite causal order.

Overall, this thesis contributes to the understanding of the relationship between indefinite
causal structure and QNWE. A notable further investigation suggested is to pursue the
computation into the acausal circuit and analyze its capabilities.

Keywords: Process matrix, indefinite causal structure, Lugano process, time-delocalized
subsystems, quantum nonlocality without entanglement, Shift basis.
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Chapter 1

Introduction

1.1 Context
Causality is a fundamental concept in physics; an event A causing an event B must
precede it in time. All fundamental theories of physics assume a definite order of event
and allow to say to say without ambiguity if A is in the causal past of B, the opposite or
the two are space-like separated.1

However, the quest for the unification of quantum theory (QT) with general relativity
into a theory of quantum gravity has led to a rethinking of the causal structure of
quantum mechanics. The reason is that on the one hand, QT is a probabilistic theory with
a fixed causal structure, that is, the causal structure is always everywhere well-defined.
But on the other hand, general relativity is a deterministic theory with a dynamic causal
structure, that is, the mass distribution creates a local spacetime bending that affects the
causal structure by deforming the light cone.
With these two things in mind, one can speculate that quantum gravity would be a
probabilistic theory with a dynamic causal structure. [21]

Several frameworks that revisit the causal structure of quantum mechanics currently exist
[29, 21, 25, 5]. These ideas form the area of research that is quantum causality, which
is a relatively new and rapidly growing field.

The framework considered in this thesis is the process matrix formalism first introduced
in [29]. It allows to describe the most general causal relationships possible between
local parties, performing operations described by standard QT, without creating logical
paradoxes. This gives rise to situations where the causal order between these parties is
indefinite.2

Aside from the above foundational incentive, there are benefits to drop the assumption of
a definite causal structure such as the violation of causal inequalities [29] and other infor-
mational tasks otherwise impossible [10, 1, 18, 15]. These applications are all the more
interesting knowing that a causally indefinite process, the quantum switch, has been
realized experimentally [30, 31, 17] and has already been used to obtain computational
advantages [36, 19].

The experimental realization of the quantum switch has given rise to debate whether it
consists in a genuine physical implementation of a process with indefinite causal structure
or only a simulation of it. To address this question and gain a better understanding of the
experiment, the concept of time-delocalized quantum subsystems (TDS) has recently

1 For a reader unfamiliar with these concepts, some insights into the concepts of causal relationships
between events in spacetime and light cone are developed in Appendix A.

2 This formalism is presented in more details in Chapter 3.1.
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been introduced in [28]. This concept consists of changing how quantum circuit operations
are described, shifting from acting on subsystems with definite time to subsystems that
are not associated with specific times.3 This initially allowed to establish a correspondence
between all unitarily extensible bipartite processes4, even those with an indefinite causal
order, and temporally ordered quantum circuit from standard QT.

Last year, it was proved in [34] that this correspondence can be generalized to all unitarily
extensible tripartite processes together with their unitary extensions. The same paper
then use this result to obtain a temporally ordered circuit of a known unitarily extensible
tripartite causally indefinite classical process, the Lugano process. [7]

A feature of interest of the Lugano process is that it was shown in [24] that it allows
to perform another impossible task assuming a well-defined causal order: the perfect
distinguishability of, a set of separable and orthogonal three-qubits states known as,
the Shift basis through local operation and classical communication (LOCC). This
is something which should not be possible because of quantum nonlocality without
entanglement (QNWE), as first shown in [8], but is realizable at the cost of losing
a definite causal structure.5 For readability, this measurement protocol is named the
Lugano LOCC Shift basis measurement (LLSBM).

With this context in mind, one could wonder what happens if we take the LLSBM and
try to implement it within a temporally ordered circuit that executes the Lugano process.
How would this circuit behave ? How much of Shift basis distinguishability would it
offer ? What are its characteristics of QNWE under LOCC ? Using TDS, there is a
correspondence between the circuit and the process matrix representation of the Lugano
process. At which step of this correspondence would the trade between QNWE and causal
order takes place ?

These are the questions that motivate this thesis.

1.2 Scope of the Thesis
The central research question that this thesis follows is "How does the ability of the
causally indefinite Lugano process to achieve the Shift basis measurement with LOCC
manifest itself in its implementation into a temporally ordered circuit ?".

To answer this question, we work with a simplified version of the temporally ordered
circuit, named the Lugano circuit, established by J. Wechs [33]. We begin by showing
that this simplified circuit indeed implements the Lugano process expressed in the process
matrix formalism.

We then devise unitaries that are the dilations of the specific operations performed by
the parties in the LLSBM. By incorporating theses unitaries into the Lugano circuit,
we observe that it successfully implements the Shift basis measurement. This result in a
circuit, with unique properties, which are analyzed to better understand the capabilities of
the circuit in terms of Shift basis measurement. Through this analysis, a LOCC protocol
is established that allows an almost complete Shift basis measurement by allowing to
3 The notion of TDS is presented in more details in Chapter 3.3.
4 More precisely, all unitarily extensible bipartite processes together with their unitary extensions, of

which the quantum switch is an example. The notion of unitary dilation is explained in Chapter 2.6.1
and the one of unitarily extensible process in Chapter 3.2.

5 The concepts of QNWE, Shift basis and LOCC are presented in Chapter 4.
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distinguish the six first Shift states and to know if we are in the presence of the last two
without being able to distinguish them.

We discuss that it’s still unclear how the Shift states can be completely distinguished when
transitioning from a temporally ordered circuit to an acausal one. To gain further insight
into this issue, a detailed computation was conducted on the non-simplified Lugano circuit
to convert it into an acausal circuit using the process matrix formalism with conceived
unitaries. This computation we hope will allow to identify the trade-off between complete
distinguishability under LOCC and indefinite causal order.

1.3 Structure of the Thesis
This thesis consists of two parts. The first part establishes the theoretical framework
necessary for comprehending the thesis:

• Chapter 2, provides a review of relevant notions of QT.

• Chapter 3, introduces key concepts related to modeling an indefinite causal struc-
ture, including the process matrix formalism, TDS and the quantum switch.

• Chapter 4, presents the elements related to the Shift basis measurement protocol
such as QNWE and the Lugano process.

The second part contains the results of this thesis, along with their corresponding analyses
and discussions:

• Chapter 5, demonstrates the equivalence of the Lugano circuit with the Lugano
process expressed in the process matrix formalism.

• Chapter 6, presents the unitary and the circuit developed, performs an analysis
of their properties and establish a LOCC protocol allowing an almost complete
distinguishability of the Shift states.

• Chapter 7, examines the correspondence from the non-simplified Lugano circuit,
with conceived unitaries, to an acausal circuit.

• Chapter 8, finishes the thesis with a conclusion and considerations for further in-
vestigations.
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Chapter 2

Key Concepts of Quantum Theory

Quantum theory (QT) is the theory that describes the behavior of matter and energy at
small scales. It introduces a set of rules, concepts and notations allowing to successfully
model quantum physical systems. This enables to study the temporal evolution of these
systems, to perform measurements on them and to analyze their particularities. This
theory has been around for a long time, but recent advances have been made in the
sub-branch of quantum information.

Quantum information investigates how quantum systems can be used to treat information
by exploiting quantum properties, such as superposition and entanglement, to perform
certain tasks more efficiently than what is possible using classical methods.

This chapter introduces some key concepts of quantum theory and quantum information
relevant for this thesis. It assumes the reader to be comfortable with linear algebra. Parts
of this chapter are based on Chapter 2 of [26] and first part of [22].

2.1 Hilbert space and state vector
Any isolated physical system is associated to a Hilbert space (denoted by H) which is
a complex vector space with inner product. All vectors of unit norm of the Hilbert space
correspond to all the potential states in which the system could be. We call such a vector
a state vector, a given state of the system is completely described by it.

In this thesis, we work only with finite dimensional Hilbert spaces as we do not consider
instances where it is relevant to switch to the continuous case.

Quantum theory uses a particular notation for vectors called the bra-ket notation, it
allows to efficiently represent the algebraic operations performed between the Hilbert
space and its dual space (denoted by H∗). In this notation, a state vector or "ket" is
written

|ψ⟩ ∈ H

while the dual of the state vector or "bra" is obtained by taking its adjoint †, which
corresponds to his conjugate transpose.

|ψ⟩† = ⟨ψ| ∈ H∗

A state vector has a matrix representation for a given basis. It is a column vector whose
elements are the components of the vector in this specific basis,
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|ψ⟩ =


ψ1
ψ2
...
ψn


(n×1)

where |ψ⟩ belongs to a Hilbert space of dimension n and whose components ψi are
complex numbers.

The matrix representation of the corresponding dual vector is

⟨ψ| =
[
ψ∗

1 ψ∗
2 . . . ψ∗

n

]
(1×n)

Another way of representing the state vectors is in terms of a linear combination of a
basis. Let {|i⟩} be an orthonormal basis in H, we can decompose

|ψ⟩ =
∑

i

ψi|i⟩

An important concept in quantum information is the qubit (abbreviation for quantum bit)
which is mathematically described by a state vector in a two-dimensional Hilbert space.
A qubit is most often described in the computational basis {|0⟩, |1⟩}

|ψ⟩ = α|0⟩ + β|1⟩ = α

[
0
1

]
+ β

[
1
0

]
=
[
α
β

]

Where α and β are complex numbers with |α|2 + |β|2 = 1 for normalization.

Common concrete examples of qubits are photons in superposition of horizontal and
vertical polarization states or particles in superposition of spin states.

2.2 Inner product, Norm and Outer Product
Each dual vector ⟨ϕ| ∈ H∗ is a linear operator that sends a vector |ψ⟩ ∈ H to a complex
number.1 This operation is called the inner product and is written ⟨ϕ|ψ⟩. Two vectors
are orthogonal to each other if their inner product is zero.

The inner product allows to define the norm of a vector in a Hilbert space. It is given by
|||ψ⟩|| =

√
⟨ψ|ψ⟩.

Two vectors of a Hilbert space can be used to define an outer product |ψ⟩⟨ϕ| whose
action on a arbitrary vector |φ⟩ of the same Hilbert space is given by

(|ψ⟩⟨ϕ|)|φ⟩ = ⟨ϕ|φ⟩|ψ⟩

The outer product allows to demonstrate the completeness relation.

(
∑

i

|i⟩⟨i|)|ψ⟩ =
∑

i

|i⟩⟨i|ψ⟩ =
∑

i

ψi|i⟩ = |ψ⟩

Since this equation is true for all |ψ⟩, it follows that ∑i |i⟩⟨i| = I where I is the identity
operator.
1 The notion of linear operators is explained in Appendix B.1.
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2.3 Liouville Space and Density Operator
One important concept rising from the one of Hilbert space is the associated Liouville
space (denoted by L(H)). It is the space of linear operators that act on H. The
Liouville space is also a Hilbert space but with a different inner product known as the
Hilbert-Schmidt inner product.

For two operators A,B ∈ L(H), this inner product is defined as (A,B) = tr(A†B).2

The Liouville space can be understood as equivalent to the tensor product of a Hilbert
space with its dual.

The description of physical systems in term of state vectors in Hilbert space can be
generalized to density operator3 in Liouville space.

2.3.1 Pure States, Mixed States and Density Operator

The state of a quantum system can be either pure or mixed. A pure state is one for which
we have complete information about the system, in the sense that there is no classical
uncertainty regarding the quantum state, and we can describe the system using a single
state vector |ψ⟩. [20]

On the other hand, a mixed state is one for which we have incomplete information about
the system. In this case, we resort to (classical) statistics to describe the state. Suppose
that we have a quantum system which is in one of a number of states |ψi⟩, with respective
probabilities pi. We write the ensemble of pure states {pi, |ψi⟩} and the density operator
for this system [26]

ρ =
∑

i

pi|ψi⟩⟨ψi|

In order for the density operator to be a physical state, it must be Hermitian positive semi-
definite to ensure that the probabilities pi associated with the eigenvalues are nonnegative.
And its trace must be equal to one such that the probabilities pi sum up to one.

2.4 Unitary Operation
The evolution of a closed quantum system is described by unitary operators. A unitary
operator, denoted U , acts on a quantum state |ψ⟩ and produces a new state |ψ′⟩ according
to

|ψ′⟩ = U |ψ⟩

The important property of unitary operator is that their transpose conjugate is equal to
their inverse

U † = U−1

This ensures that the normalization of the state vector is preserved. To illustrate this,
let’s take the inner product of the evolved state vector

⟨ψ|U †U |ψ⟩ = ⟨ψ|U−1U |ψ⟩ = ⟨ψ|ψ⟩ = 1

Additionally, this property guarantees that unitary operators are reversible. By taking the
inverse of a unitary operator, we can revert the evolution and recover the original state.
2 The notion of trace and partial trace is explained in Appendix B.2.
3 also called density matrix when refering at its matrix representation.
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System evolution can also be described with density operators, for example the unitary
evolution of a density operator ρ is given by

ρ′ = UρU †

2.5 Measurement
Doing a measurement on a quantum system changes it. This corresponds to lose informa-
tion on its statistical properties, by extracting a value into the macroscopic world. This
can be represented mathematically by different types of measurements that we introduce
here.

2.5.1 General Measurement

A measurement on a quantum system gives one of a discrete set of possible values. A
way of representing it is by using a set of operators, each corresponding to a possible
result, acting on the state space of the system being measured.

These measurement operators are denoted {Mm} where m is an index that refers to
the possible measurement outcomes. The probability that an outcome m occurs after a
measurement on state |ψ⟩ is given by

p(m) = ⟨ψ|M †
mMm|ψ⟩

Since the probabilities sum to one, the measurement operators must obey the complete-
ness relation ∑

m

p(m) = 1 −→
∑
m

M †
mMm = I

The new state of the system after a measurement with result m is

|ψm⟩ = Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩

In terms of density operator, the probability that the outcome m occurs is p(m) =
tr(Mmρ) and the post-measurement state is

ρm = MmρM
†
m

tr(M †
mMmρ)

The density operator enables to capture the different possible measurement outcomes
while accounting for the classical uncertainty of the system.

2.5.2 Projective Measurement

Another common way of formulating measurements in QT is projective measurements.
It consists in a special case of general measurements where the measurement operators
Mm, now called projective operators, are Hermitian, orthogonal and idempotent.

In this case,
p(m) = ⟨ψ|M †

mMm|ψ⟩ = ⟨ψ|M2
m|ψ⟩ = ⟨ψ|Mm|ψ⟩
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The measurement is described by an observable O, which is an Hermitian operator
which can always be described as a spectral decomposition of projective operators O =∑

mmMm whose eigenvalues are the possible measurement results.

The new state of the system, after a projective measurement of result m is

|ψm⟩ = Mm|ψ⟩√
⟨ψ|Mm|ψ⟩

Projective measurement has the valuable property that the average value of the observable
⟨O⟩ is

⟨O⟩ =
∑
m

mp(m) =
∑
m

m⟨ψ|Mm|ψ⟩ = ⟨ψ|
(∑

m

mMm
)
|ψ⟩ = ⟨ψ|O|ψ⟩

2.5.3 POVM (Positive Operator-Valued Measure)

In some cases, the interest of a measurement is in the probabilities of its respective
outcomes and not in the post-measurement state of the system. The POVM formalism
is used for these applications.

From the set of measurement operators {Mm}, we can define a set of POVM elements
{Em = M †

mMm}. Which are positive operators (their eigenvalues are nonnegative) that
satisfy ∑mEm = I

The set of operators Em are sufficient to determine the probabilities of the different
measurement outcomes.

p(m) = tr(Emρ) =
∑

i

⟨i|Em|ψ⟩⟨ψ|i⟩ =
∑

i

⟨ψ |i⟩⟨i|︸ ︷︷ ︸
I

Em|ψ⟩ = ⟨ψ|Em|ψ⟩

2.6 Quantum Operation
As we have seen, unitaries allow to describe physically realisable transformations on closed
quantum systems. However, when dealing with open systems, we need a more general
framework known as quantum operations. Quantum operations, also referred to as
quantum channels or quantum processes, are linear maps that act on Liouville spaces.
They allow us to describe physically realizable transformations on open systems.

We note such a quantum operation E(ρ) : ρ → E(ρ).

To ensure that the quantum operations describe physically meaningful evolutions, they
must satisfy certain requirements. Firstly, they must be positive, meaning that the prob-
abilities associated with the outcomes of measurements are nonnegative. Secondly, quan-
tum operations must be trace-preserving (TP)

tr(E(ρ)) = tr(ρ) = 1∀ρ

This ensures that the probabilities of the output density operator ρ′ all sum up to one.

Merely being positive is not sufficient; we also require complete positivity (CP) for
quantum operations. It ensures that even when the operation is extended to act on a
part of a larger system, it remains positive. This condition is crucial to treat open system
where an outside system can have influence on the operation.
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In summary a quantum operator must be a linear completely positive trace-preserving
(CPTP) map.

2.6.1 Stinespring Dilation Theorem

We presented two approaches to model the dynamics of a quantum system: using uni-
tary operations for closed system or CPTP maps for open system. While these models
may seem disconnected, a correspondence between them can be established through the
Stinespring dilation theorem.4

This theorem states that if the evolution of a density operator is described by a CPTP
map, there exists a corresponding unitary operation acting on a larger Hilbert space. This
larger system includes the original system of interest as well as an ancillary system.

By applying this unitary evolution on the joint system and subsequently tracing out the
ancillary system, we can retrieve the evolution described by the CPTP map on the original
system. In other words, any quantum channel, represented by a CPTP map, can be derived
from an initial unitary operation acting on a larger system.

2.7 Quantum Circuit
The Quantum circuit model is a valuable model used in the field of quantum information
to represent operations that a quantum system undergoes. In this model, quantum
systems evolve through a sequence of quantum logical gates, quantum channels and
measurements.

In the following sections, we will introduce some of the essential quantum gates employed
in this thesis. It is important to note that these gates manipulate qubits, which are
the quantum counterparts of classical bits. A gate operates on inputs comprising one
or multiple qubits. Unlike classical gates, quantum gates are always reversible as they
involve unitary transformations.

2.7.1 NOT Gate

The NOT gate, also known as the Pauli X gate, is a basic quantum logic gate that
operates on a single qubit. It works by flipping the state of the qubit, changing |0⟩ to |1⟩
and vice versa.

Figure 2.1: Representation of the NOT gate in quantum circuit.

Mathematically, the NOT gate corresponds to the application of the Pauli X unitary which
matrix representation in the computational basis is

X =
[
0 1
1 0

]
4 More information on this theorem can be found in the paper that first introduced it [32].
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2.7.2 CNOT Gate

The CNOT (Controlled-NOT) gate operates on two qubits: a control qubit and a target
qubit. The control qubit remains unchanged, while the target qubit undergoes a NOT
operation if the control qubit is in state |1⟩.

Figure 2.2: Representation of the CNOT gate in quantum circuit.

The working of the CNOT can be modeled as the operation |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X

When the control black dot is replaced by a white circle, this means that the controlled
gate has the opposite working : the gate is performed when the control qubit is in state
|0⟩.

The CNOT gate can be generalized to a three-qubit system as the Toffoli gate. The
Toffoli gate operates on two control qubits and a target qubit. It applies a logical NOT
operation to the target qubit only if both control qubits are in the state |1⟩.

Figure 2.3: Representation of the Toffoli gate in quantum circuit.

It can be modeled as the operation

(|0⟩⟨0| ⊗ |0⟩⟨0| + |0⟩⟨0| ⊗ |1⟩⟨1| + |1⟩⟨1| ⊗ |0⟩⟨0|) ⊗ I + |1⟩⟨1| ⊗ |1⟩⟨1| ⊗X

2.7.3 Hadamard Gate

The Hadamard gate is a single-qubit gate that allows to get superposed states from state
of the computational basis and vice-versa.

Figure 2.4: Representation of the Hadamard gate in quantum circuit.
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It works in the following way
Input Output

|0⟩ |+⟩
|1⟩ |−⟩
|+⟩ |0⟩
|−⟩ |1⟩

where |±⟩ stands for 1√
2(|0⟩ ± |1⟩).

And the corresponding unitary in the computational basis is H = 1√
2

[
1 1
1 −1

]
.

2.7.4 SWAP Gate

The SWAP gate is a two-qubit gate that exchanges the states of two qubits.

Figure 2.5: Representation of the SWAP gate in quantum circuit.

It can be modeled as the operation

|0⟩⟨0| ⊗ |0⟩⟨0| + |0⟩⟨1| ⊗ |1⟩⟨0| + |1⟩⟨0| ⊗ |0⟩⟨1| + |1⟩⟨1| ⊗ |1⟩⟨1|
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Chapter 3

Modelling Indefinite Causal
Structure

A physical process with an indefinite causal structure refers to a scenario in which
multiple parties locally perform quantum operations, but it is not possible to establish
a well-defined causal ordering of these operations. The process matrix formalism em-
ployed to describe such processes allows for general situations where parties can base
their operations depending on their input systems, resulting in output systems that can
subsequently influence the operations performed by other parties while maintaining an
indefinite causal order of the parties’ operations and without creating logical paradoxes.
While this may seem counterintuitive to our perceptions, an implementation of such a
process, known as the quantum switch, has been experimentally realized [30, 31, 17]
and has already been used to obtain computational advantages [36, 19] unreachable in
situations with well-defined causal order. Furthermore, a description of QT lacking a
definite causal structure could potentially have relevance for quantum gravity. [21, 29]

This chapter presents the framework used in this thesis to model causally indefinite pro-
cesses.

3.1 Process Matrix Formalism
The process matrix formalism considers multiple parties (usually named Alice, Bob, Char-
lie, etc.), each of whom interacts with an input quantum system and produces an output
quantum system, without a definite causal order between them.

More precisely, each party is assumed to be in its closed laboratory, in the sense that
it is completely isolated from the outside world during its operations. The laboratory is
opened only for the entry and exit of the system, and is otherwise kept closed between
these events. [29]

The process matrix W serves as a mean to connect local operations and determine
their causal relationship, whether definite or indefinite. Essentially, it takes into account
all physical processes occurring outside of the local laboratories. This allows for the
complete determination of the outcome probabilities of the process based on the chosen
local operations and the way the process matrix connects the laboratories. [9]

This formalism is the most general possible, allowing for the description of a wide range of
causal structures. The only constraint is that it must lead to valid outcome probabilities.
However, this generality leads to the existence of processes where it is unclear whether
they have a physical interpretation or realization and makes the formalism more complex
to understand.
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To provide a preliminary understanding of the concept, we will first present an example of
a causally indefinite process: the quantum switch. The quantum switch can be interpreted
in a physical way as a controlled superposition of two causal orders. This example offers
some intuition about the formalism before delving into its mathematical description.

3.1.1 Example of a Causally Indefinite Process: The Quantum Switch

The quantum switch is a causally indefinite bipartite process involving Alice and Bob
(denoted by A and B). It involves a two-qubit state consisting of a control and a target
qubit (respectively denoted by |t⟩ and |c⟩).

The local operations performed by A and B on the target qubit |t⟩ The two parties A
and B apply their local operation on |t⟩ depend on the state of the control qubit |c⟩. If
|c⟩ = |0⟩, A acts before B. Conversely, if |c⟩ = |1⟩, B acts before A.

The interesting aspect of the quantum switch arises when the control qubit is put in a
superposition state, for example, |c⟩ = |+⟩. In this case, the operations performed by A
and B are applied to the target qubit in a superposition of orders, resulting in an indefinite
causal structure where both A ≺ B and B ≺ A. Such a process cannot be described by
standard quantum theory (QT) and requires the use of the process matrix formalism.

Figure 3.1 illustrates the causal orders in the quantum switch process for both |c⟩ = |1⟩
and |c⟩ = |+⟩, where |t⟩in and |t⟩out represent the state of the target qubit before and
after the quantum switch operation, respectively.

(a) Quantum switch operation when |c⟩ = |1⟩.
In such case, there is a definite causal order

A ≺ B.

(b) Quantum switch operation when |c⟩ = |+⟩. In such
case, there is an indefinite causal order, |t⟩in could first
go to A and then to B (red solid line) or vice versa (blue

dashed line).

Figure 3.1: Illustration of the quantum switch causal order for two
different values of the control qubit.

The quantum switch, which was first introduced in [11], has since been experimentally
realised in multiple laboratory, as documented in notable studies such as [30, 31, 17].
One example of its implementation is an optical setup using a photon emitter. In this
setup, a beamsplitter coherently controls the order of the two operations by selectively
transmitting or reflecting the incident photon based on its polarization state.

Before describing mathematically the process matrix formalism, it is necessary to introduce
several mathematical notions, starting with the one of quantum instrument.
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3.1.2 Quantum Instrument

Quantum channel describes the most general evolution that a quantum state can undergo.
However, for the process matrix formalism, we need to consider what are the measurement
results of each party. We are thus looking for the most general evolution that transforms
an input quantum system to both an output quantum system and a classical register that
records the corresponding measurement outcome. Such evolution is given by a quantum
instrument. [14]

Mathematically, a quantum instrument {Mm} is a set of CP trace non-increasing maps
Mm whose sum ∑

m Mm is a CPTP map, where m labels outcomes of the quantum
instrument. In addition, one can consider scenarios where the parties can choose between
different quantum instruments based on classical random variables (such as flipping a
coin), such classical variables are named the settings of the parties.

To illustrate this, let’s consider a bipartite process involving Alice and Bob both performing
quantum instruments on ingoing and outgoing quantum systems. The incoming quantum
systems are labeled by AI and BI , while the outgoing systems are labeled by by AO and
BO, respectively. The laboratories settings are labeled by x and y, and a and b represent
the possible outcomes of their operations. So, MA

a|x ∈ L(HAI , HAO ) represents Alice’s
instrument for setting x with outcome a. This is illustrated in Figure 3.2.

Figure 3.2: Illustration of quantum instruments in a bipartite process.

From the definition presented above, one can understand that a singleton quantum in-
strument is a CPTP map with a single outcome which occurs with certainty. [29]

The notion of quantum instrument will allow to get an expression of the most general
correlations that the parties can establish for any causal structure.
However, it is first necessary to introduce some mathematical notions which are the CJ
isomorphism and the link product.

3.1.3 CJ Isomorphism

The Choi-Jamiołkowski isomorphism (CJ isomorphism) [23, 13] refers to a pair of
bijections which are convenient to represent quantum operations and their composition.
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Pure CJ Isomorphism

The pure CJ isomorphism establishes a bijection between a linear operatorA ∈ L(HX , HY )
and a vector |A⟩⟩ ∈ HXY . If {|i⟩} is an orthonormal basis of HX and |I⟩⟩ =

∑
i |i⟩ ⊗ |i⟩

is a maximally entangled state in HXX then the bijection is given by

|A⟩⟩ = (A⊗ IX)|I⟩⟩ =
∑

i

A|i⟩ ⊗ |i⟩

A = |A⟩⟩TX

where TX is the transpose over HX .

Mixed CJ Isomorphism

The mixed CJ isomorphism is a bijection between a quantum maps
M ∈ L(L(HX), L(HY )) and linear operators M ∈ L(HXY ) which is given by

M = (M ⊗ IX)(|I⟩⟩⟨⟨I|)

M(ρ) = (trX(ρM))T

where |I⟩⟩⟨⟨I| = Σ
ij

|i⟩⟨j| ⊗ |i⟩⟨j| and j another label for the basis {|i⟩}.

From now on, when referring to quantum operations, we will use the calligraphic font to
denote the operators, and the non-calligraphic font to denote their CJ isomorphism.

3.1.4 Link Product

The link product is an operation which expresses composition between operators in their
CJ representation.

Consider a circuit that successively performs, on an input system, two quantum operators
M ∈ L(L(HA), L(HB)) and N ∈ L(L(HB), L(HC)). These two operators can be
composed into one T ∈ L(L(HA), L(HC)).

Figure 3.3: Composition of two quantum operators.

This can be done through the CJ isomorphism using the link product ∗ which composes
the two into the operator T ∈ L(HAC).
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T = NBC ∗MAB = trB((NBC ⊗ IA)(IC ⊗MAB))

By taking the link product we get rid of the intermediate spaces of the tensor product
of the two quantum operators, that is, we obtain an operator that lives only in the input
and output spaces of the circuit.

This link product is extensively use in this thesis, specifically its vector form; Let’s consider
two vectors |a⟩ ∈ HXY and |b⟩ ∈ HY Z , their link product is given by

|a⟩ ∗ |b⟩ := (IXZ ⊗ ⟨⟨I|Y Y )(|a⟩ ⊗ |b⟩)

The action of a linear map M on a state ρ can be rewritten M(ρ) = M ∗ ρ. For a
circuit composed of succesive linear maps M1,M2, ...,Mn The circuit output is given
by M1 ∗ M2 ∗ ... ∗ Mn ∗ ρ.

3.1.5 Process Matrix

The notion of quantum instrument was used in [29], to get an expression of the most
general correlations P (a, b|x, y) that the parties can establish. These correlations are
given by a generalized Born’s rule

P (a, b|x, y) = tr(MAIO

a|x ⊗MBIO

b|y WABIO )

Where we use the notation ABIO = AI ⊗ AO ⊗ BI ⊗ BO and MAIO

a|x is the CJ form of
MA

a|x. The process matrix WABIO is an Hermitian matrix in L(HABIO ) wich can be
seen as the environment linking the local operations.

In order for these correlations to be valid probabilities, the process matrix must satisfy
certain conditions:1

• W must be positive semidefinite to ensure nonnegative correlations.

• W must be normalized: tr(W ) = dAO
dBO

such that the probabilities sum up to
one.

• W must live in a particular linear subspace of L(HABIO ) defined in Appendix B of
[4], this ensure that the correlations obtained are constant for any CPTP maps we
can plug into the process.

It was demonstrated in [29] that satisfying these conditions implies that the process matrix
formalism does not allow for the creation of logical paradoxes, such as scenarios involving
an agent going back in time and killing his parents.

For some processes, the process matrix is a rank-one projector W = |w⟩⟨w| in such cases,
we call the vector |w⟩ the process vector. [4]

Although the process matrix formalism has been presented here for the bipartite case, it
can be extended to scenarios involving more than two parties.
1 More details about these conditions can be found in Appendix B of [4].
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3.2 Unitary Extension of the Process Matrix
The existence of a unitary extension of the process matrix, has been proposed has
a necessary condition for a process to be physically valid. This concept was initially
introduced in [3]2, where additional comprehensive information can be found.

Without loss of generality, we can extend the notion of process to encompass a global
past P and a global future F , which can be seen as additional parties with trivial input
(respectively output) space. Mathematically, we can then define a map GAB mapping all
the input systems of the process to its outputs. In the case of a bipartite process, as given
in Figure 3.4, this corresponds to the mapping from A′

I , B
′
I , P to A′

O, B
′
O, F .

Figure 3.4: Illustration of the extension of a bipartite process. As given
in Figure 1 of [3].

With such description, a process can equivalently be understood as a map that takes the
quantum operations A and B as inputs and maps them to a global operation GAB from
the global past P with the ancillas A′

I and B′
I to the global future F with the ancillas

A′
O and B′

O.

In [3], two important definitions are introduced:

• A process is a unitary extension if for all unitaries A,B, the resulting GAB is a
unitary.

• A process is unitarily extendable if one can recover it from a unitary extension by
inputting the state |0⟩ in P and tracing out F .

Non unitarily extendable process would correspond to non unitary GAB which would not
be physical. More details about this notion are given in [3].

2 Note that in this paper, the unitary extension is referred as purification.
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3.3 Time-delocalized Subsystems
The concept of time-delocalized quantum subsystems (TDS) is a recent development
in the context of the process matrix formalism. This notion allows to connect processes
with indefinite causal order and temporally ordered quantum circuit from standard QT.

The notion of TDS was initially introduced in [28] with the aim to determine whether
causally indefinite processes, in particular the quantum switch, consist in real physical
implementation or only a simulation of it. The paper demonstrated that any bipartite
processes with indefinite causal order, along with its unitary extension, can be achieved
by a temporally ordered quantum circuit, even those with an indefinite causal order.
This correspondence can be acheived by changing how quantum circuit operations are
described, shifting from acting on subsystems with definite time to subsystems that are
not associated with specific times. TDS thus provide a mathematical argument that
some processes have a realisation in standard QT. This has been last year generalized
to tripartite processes in [34]. We give here an overview presentation of the concept of
TDS, for more detailed information on this topic, interested readers can refer to [34]3.

In standard QT, the time evolution of a system can be represented using a quantum
circuit, where sequences of operations are applied to systems in a well-defined temporal
order. Such a circuit can always be divided into fragments which are themselves quantum
operations. To illustrate this, Figure 3.5 depicts an arbitrary circuit divided into two
fragments: a red fragment and a blue fragment.

Figure 3.5: Illustration of the decomposition of a quantum circuit into two fragments. The
circuit consists of various quantum operations. These operations are interconnected through the
systems A,B,C,D,E,F ,G,H,I. The red fragment performs a quantum operation on the input
systems A,F , producing output systems D,H,I, each associated with different time intervals.
While the the blue fragment, act on D,H,I, resulting in systems A,F . As given in Figure 2.a in

[34].

In this case, the outgoing systems of the blue fragment are the ingoing systems of the red
fragment, and vice versa. and vice versa. The circuit is said to be in a cyclic composition.

To describe this, we perform the composition of the fragment using a different choice of
systems than in the original circuit. This results in systems that are not associated with
a definite time, hence the term "time-delocalized systems".

For example, if we want to compose the red fragment in term of some new system we
need to compose it with isomorphism Jin and Jout corresponding to a new tensor product
structure on the incoming and outgoing Hilbert spaces. If we also do a composition of
3 In this paper, the Lugano process is referred as the AF process and its purified form as the BW process.
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the blue fragment with the inverse of these isomorphisms, we can compose the fragments
back together into a cyclic circuit, as given in Figure 3.6

Figure 3.6: Illustration of the composition of the two fragments into a cyclic circuit. (b) The
red circuit fragment can be described using time-delocalized subsystems V ,W ,X,Y , which are
defined by the isomorphisms Jin : HV W → HAF and Jout : HDHI → HXY . This description
allow to derive a new operation, denoted {L[k]}k from V ,W to X,Y . (c) Time-delocalized
description of the blue fragment in a similar way than for the red fragment. (d) New subsystem
description in terms of the time-delocalised subsystems. As given in Figure 2.b,c,d in [34] where

more information is provided.

The generalization of TDS to the tripartite case and its application to the Lugano process
are of particular interest to us.

3.3.1 Generalization to the Tripartite Case

In [34], it was demonstrated that for any unitarily extended tripartite process, the corre-
sponding temporally ordered circuit has a general form as depicted in Figure 3.7.

Figure 3.7: Temporal circuit for a general tripartite unitary process. As given in Figure 3 of
[34] where more information about the circuit is provided.

Where AI , BI , CI are time-delocalized input systems of the joint system T1T2T̄
′
1T̄

′
2Q1PO

and AO, BO, CO are time-delocalized output systems of the joint system T ′
1T

′
2T̄1T̄2Q

′
2FI .

The operations UA and UB act on a target system T depending on the control qubit Q,
and these operations are combined with the circuit operations ω which depend on UC and
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encode information about the process. The computation of the operations ω is explained
in Section 5 of [35]. Charlie’s operation occurs in a time-delocalized manner, neither
in the past nor in the future, but on the two possible times. The ancillary system P is
prepared in the state |000⟩, and the system F is discarded.

An important aspect of the quantum switch in the context of TDS is that it was demon-
strated in [6, 37] that the set of all unitary extension of unitarily extensible bipartite
processes are variations of the quantum switch. Looking at Figure 3.7, one can interpret
this circuit as a form of quantum switch where the operation of C can put the operations
of A and B in a superposition of causal order.

As previously, the circuit can be decomposed into two fragments, which can then be
composed using isomorphisms Jin and Jout to obtain a cyclic circuit, as given in Figure
3.8.

Figure 3.8: Description of the tripartite temporal circuit in terms of TDS. (a) Description of
the red fragment in terms of time-delocalized subsystems. (b) Description of the blue fragment
in terms of time-delocalized subsystems. (c) Composition of the operations R(UC) and R′ in
a cyclic manner as in the process matrix framework. As given in Figure 4 of [34] where more

information is provided.
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This description of tripartite processes in terms of TDS is particularly intriguing because
the Lugano process, which is known to violate causal inequalities and to possess interesting
properties in terms of QNWE, is a unitarily extendible tripartite process. These properties
motivated the realization of of TDS description of the Lugano process in [34]. This TDS
description is shown in Figure 3.9, where we can see that UC is applied once with certainty
in the beginning and, at some later time, is then reversed and reapplied depending on the
action of the other parties. Thus, in any case, UC is only applied once in total.

Figure 3.9: Description of the Lugano process in terms of TDS. As given in Figure 5 of [34]
where more information about the circuit is provided.
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Chapter 4

Quantum Nonlocality Without
Entanglement and Lugano Process

This chapter serves as the final piece of theoretical background necessary to fully under-
stand the results presented in this thesis. We introduce the concepts of local operation
and classical communication (LOCC), which are necessary to understand quantum
nonlocality without entanglement (QNWE). Additionally, we present a causally indef-
inite process known as the Lugano process and explain how it can be used to achieve
something impossible with QNWE in a situation with a well-defined causal order: the
establishment of a LOCC protocol that implements the Shift basis measurement.

4.1 Local Operation and Classical Communication (LOCC)
Considering all possible operations that can be performed on a quantum system, there
exists a subset known as Local Operations and Classical Communication (LOCC).
This subset involves multiple parties who share certain subsystems of the overall quantum
system. The parties are limited to performing actions solely on their respective subsystems,
such as carrying out measurements and more general quantum operations. However,
they are allowed to communicate the results of their operations through classical means.
Typically, the actions performed by the parties depend on the information they receive
from each other. [12]

4.2 Quantum Nonlocality Without Entanglement
Quantum Nonlocality Without Entanglement (QNWE) is a physical property that oc-
curs in a multi-party system when the parties cannot perfectly distinguish quantum states
that are separable and orthogonal through local operations and classical communication
(LOCC). This phenomenon is remarkable because orthogonal states can be perfectly dis-
criminated in QT. It is only when considering LOCC instead of global measurement that
these indistinguishabilities arise.

Demonstrations of QNWE are given in [8, 27].

4.2.1 Shift Basis

The first paper that highlighted QNWE [8] also found a particular set of three-qubit states
that cannot be measured locally. This set, which is of interest for this thesis, is a basis
of eight unentangled orthogonal states called the Shift basis, given by:

{|000⟩, |111⟩, | + 01⟩, | − 01⟩, |1 + 0⟩, |1 − 0⟩, |01+⟩, |01−⟩}
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where |±⟩ stands for 1√
2(|0⟩ ± |1⟩)

4.3 Lugano Process
Recently, it has been shown [24] that the discrimation of the Shift basis is achievable
through the utilization of a specific non-causal process, called the Lugano process.1

In this tripartite process, each of the three parties are in isolated laboratories, each re-
ceiving a bit as input and producing a bit as output. The input and output bits are
respectively denoted by a, b, c and x, y, z, as shown in Figure 4.1.

Figure 4.1: Representation of the Lugano Process. Each party’s input
bit is a function of the the output bits of the two other parties.

Each party’s input bit is a function of the the output bits of the two other parties according
to the following relationships: 

a = ȳz

b = xz̄

c = x̄y

where x̄ denotes the boolean negation of x.

Furthermore, it is worth mentioning that the Lugano process is classical within the process
matrix framework. In this context, the operations performed by the parties and the process
itself are described by classical probability theory. It is important to note that even within
this classical setting, causally indefinite processes can be observed when considering more
than two parties. Formally, the classical framework serves as a special case of the quantum
framework, where all objects are diagonal in the computational basis. Additionally, the
Lugano process is deterministic, implying that the corresponding channel is determined
entirely by a deterministic function mapping the parties’ outputs to their inputs. Circuits
corresponding to this process have been studied in [34, 24, 2].

1 This process was first highlighted in [7] as an extremal point of the deterministic-extrema polytope.
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4.4 Lugano process-based LOCC Shift Basis Measurement
(LLSBM)

In [24] it was demonstrated a Lugano process-based LOCC Shift basis measurement
(LLSBM) can be achieved through the protocol shown in Figure 4.2.

Figure 4.2: Schematic of the LOCC implementation of the Shift basis
measurement using the Lugano process. Where |ψ⟩ is an arbitrary input
state and (✸) represents the interface to the Lugano process. As featured

in [24].

This protocol involves three parties, with identical operations. Let’s examine Alice’s
procedure as an example.
Alice receives a qubit from the unknown input Shift state |ψ⟩. Based on the values of
z and y communicated to her by the Lugano process, she applies a Hadamard gate to
her qubit only if ȳz = 1.2 After that, she performs a measurement in the computational
basis and communicates her result x. Subsequently, she applies another Hadamard gate
to the post-measurement state |x⟩ with the same condition ȳz = 1.

It has been proven in [24] that for each input Shift state corresponds a unique mea-
surement result (x, y, z), and the protocol successfully retrieves the input state |ψ⟩ with
certainty. This one-to-one correspondence is presented in the Table 4.1.

Shift State Output State Shift State Output State
|000⟩ |000⟩ |1 + 0⟩ |100⟩
|111⟩ |111⟩ |1 − 0⟩ |110⟩

| + 01⟩ |001⟩ |01+⟩ |010⟩
| − 01⟩ |101⟩ |01−⟩ |011⟩

Table 4.1: Correspondences between the Shift states and the measure-
ment outputs of the protocol of [24].

2 Note the equivalence ȳz = (y ⊕ 1)z, xz̄ = (z ⊕ 1)x and x̄y = (x ⊕ 1)y.
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4.4.1 Quantum Circuit Generating the Shift Basis

In addition to the LLSBM protocol, there is another circuit that successfully replicates the
one-to-one correspondence indicated in Table 4.1. This alternative circuit is presented in
Figure 4.2, which is featured in [27].

• H

• H

H •

Table 4.2: Quantum circuit generating the Shift basis from the compu-
tational basis. As established in [27].

However, unlike the previous protocol, this circuit cannot be replaced by a LOCC protocol
as it was demonstrated in [27].
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Part II

Results
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Chapter 5

Lugano Process Implementation by
the Lugano Circuit

The first result of this thesis is the demonstration that the circuit designed by J. Wechs
[33] effectively implements the Lugano process. For readability, we call this circuit the
Lugano circuit. This circuit was obtained through a private communication with J.
Wechs, who established it with the aim of obtaining a simplified version of the time-
delocalized description of the Lugano process given in Figure 3.9. This initial step is
crucial as we use the Lugano process to reproduce the Shift states measurement from
Figure 4.2. Whe thus need a circuit that implements the Lugano process to conduct
our research. A formal proof that the Lugano circuit effectively implements the Lugano
process has not yet been carried out, which is why we are doing it here.

UA •

UB UB •

UC • • UCXU
†
C

U1 U2 U3 U4 U5 U6 U7

Table 5.1: Lugano circuit

In order to prove that the Lugano circuit indeed implements the Lugano process, we
demonstrate the equality between two unitary:

• The total unitary that the Lugano circuit implements denoted ULC .

• The global unitary transformation resulting from the unitary extension of the Lugano
process denoted ULP . It corresponds to GAB in Chapter 3.2 but for a tripartite case.

Throughout this demonstration, we will utilize the following notations for the unitaries of
the parties:

UA =
[
a00 a01
a10 a11

]
UB =

[
b00 b01
b10 b11

]
UC =

[
c00 c01
c10 c11

]
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and for the elements of UCXU
†
C

UCXU
†
C =

[
c01c

∗
00 + c00c

∗
01 c01c

∗
10 + c00c

∗
11

c11c
∗
00 + c10c

∗
01 c11c

∗
10 + c10c

∗
11

]
=
[
λ00 λ01
λ10 λ11

]

5.1 Total Unitary of the Lugano Circuit
As indicated in Table 5.1, the Lugano circuit can be decomposed in seven unitaries.

U1 =I ⊗ I ⊗ UC

U2 =I ⊗
(
I ⊗ |0⟩⟨0| + UB ⊗ |1⟩⟨1|

)
U3 =I ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| +X ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| + I ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| + I ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|
U4 =UA ⊗ I ⊗ I

U5 =|0⟩⟨0| ⊗ I ⊗ |0⟩⟨0| + |0⟩⟨0| ⊗ I ⊗ |1⟩⟨1| + |1⟩⟨1| ⊗X ⊗ |0⟩⟨0| + |1⟩⟨1| ⊗ I ⊗ |1⟩⟨1|

U6 =I ⊗
(
UB ⊗ |0⟩⟨0| + I ⊗ |1⟩⟨1|

)
U7 =|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ I + |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ UCXU

†
C + |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ I

The total unitary ULC (LC stands for Lugano circuit) is given by the products of these
unitaries.

ULC = U7 U6 U5 U4 U3 U2 U1

The matrix representation of this unitary is given in Table 5.2. A numerical code per-
forming this computation is given in Appendix C.

5.2 Unitary Transformation resulting from the Unitary Ex-
tension of the Lugano Process

The process matrix that corresponds to the Lugano process is given by [3]

W =
∑
abc

|a, b, c⟩ABCO ⟨a, b, c|ABCO ⊗ |b̄c, ac̄, āb⟩ABCI ⟨b̄c, ac̄, āb|ABCI

To compute its unitary extension, we need to make the process reversible. This is done
in [3] using the reversible transformation |x⟩ → |f(x)⟩ into |x⟩|y⟩ → |x⟩|y⊕ f(x)⟩. This
gives the following expression for the purified process vector.

|w⟩⟩ =
∑

abc, ijk

|abc⟩ABCO |ijk⟩P |abc⟩F |i⊕ b̄c, j ⊕ ac̄, k ⊕ āb⟩ABCI

The global unitary ULP (LP stands for lugano process), which corresponds to the unitary
extension of the Lugano process, can be obtained mathematically by taking the vector link
product of the process vector and the pure CJ representation of the parties’ operations.
Without loss of generality, let’s assume that these operations are already unitaries. If this
is not the case, the Stinespring dilation theorem allow to dilate the operations to unitaries
could always be dilated to unitaries with the addition of ancillary systems. Considering
these ancillas would not affect the process this is why we omit them here. The pure CJ
representation of the global unitary is given by

|ULP ⟩⟩ = |w⟩⟩ ∗ (|UA⟩⟩ ⊗ |UB⟩⟩ ⊗ |UC⟩⟩)
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As an example for all parties, we write the pure CJ representation of the unitary of the
party A

|UA⟩⟩ =
∑
a′

|a′⟩AI ⊗ UA|a′⟩AI

Let’s denote by Hw the Hilbert space of the process vector and HABCIO the tensor
product of the Hilbert spaces of the incoming and outgoing quantum systems of the
parties. The relationships between the Hilbert spaces of the two vectors |w⟩⟩ and |UA⟩⟩⊗
|UB⟩⟩ ⊗ |UC⟩⟩ are

Hw ∩HABCIO = HABCIO

Hw \HABCIO = HP F

HABCIO \Hw = ∅

The link product then becomes

|ULP ⟩⟩ =
(
IP F ⊗ ⟨⟨I|ABCIOABCIO

)(
|w⟩⟩ ⊗ (|UA⟩⟩ ⊗ |UB⟩⟩ ⊗ |UC⟩⟩)

)
=

∑
abc, ijk

aa, i⊕b̄cbb, j⊕ac̄cc, k⊕āb|abc⟩F |ijk⟩P

where as example for A: ⟨a|UA|i⊕ b̄c⟩ = aa, i⊕b̄c.

The unitary ULP ∈ L(HP , HF ) is computed using the inverse CJ isomorphism.

ULP = (|ULP ⟩⟩)TP =
∑

abc, ijk

aa, i⊕b̄cbb, j⊕ac̄cc, k⊕āb|abc⟩F ⟨ijk|P

The matrix representation of this unitary is given in Table 5.3.

a00b00c00 a00b00c01 a00b01c00 a00b01c01 a01b00c00 a01b00c01 a01b01c00 a01b01c01

a01b00c10 a01b00c11 a01b01c10 a01b01c11 a00b00c10 a00b00c11 a00b01c10 a00b01c11

a00b10c01 a00b10c00 a00b11c01 a00b11c00 a01b10c01 a01b10c00 a01b11c01 a01b11c00

a00b10c11 a00b10c10 a00b11c11 a00b11c10 a01b10c11 a01b10c10 a01b11c11 a01b11c10

a10b01c00 a10b01c01 a10b00c00 a10b00c01 a11b01c00 a11b01c01 a11b00c00 a11b00c01

a11b00c10 a11b00c11 a11b01c10 a11b01c11 a10b00c10 a10b00c11 a10b01c10 a10b01c11

a10b11c00 a10b11c01 a10b10c00 a10b10c01 a11b11c00 a11b11c01 a11b10c00 a11b10c01

a10b10c10 a10b10c11 a10b11c10 a10b11c11 a11b10c10 a11b10c11 a11b11c10 a11b11c11

Table 5.3: Result of the computation of ULP .

A comparison between Table 5.2 and Table 5.3 reveals that these two unitaries are nearly
identical, with only 16 elements differing between them. To demonstrate the equivalence
of these two unitaries, it is necessary to establish the equality of these 16 elements with
each other. This is done in the next section.



Chapter 5. Lugano Process Implementation by the Lugano Circuit 32

5.3 Equality of Differing Terms
We are looking here to prove the equality between ULC and ULP . In order to do this
we need to prove the equality between the 16 elements that between the two matrices.
Upon examination, several of the 16 equations are identical, leading to the identification
of four distinct equations:

c00 = c01λ00 + c11λ01 c01 = c00λ00 + c10λ01

c10 = c01λ10 + c11λ11 c11 = c00λ10 + c10λ11

As UC is unitary, we can model it as UC =
[

a b
−eiϕb∗ eiϕa∗

]
with |a|2 + |b|2 = 1.

For the first equation, c00 = c01λ00 + c11λ01:

a = b(ba∗ + ab∗) + eiϕa∗(−b2e−iϕ + a2e−iϕ) = a∗b2 + a|b|2 − a∗b2 + a|a|2 = a

For the second equation, c01 = c00λ00 + c10λ01:

b = a(ba∗ + ab∗) − eiϕb∗(−b2e−iϕ + a2e−iϕ) = |a|2b+ a2b∗ + |b|2b− a2b∗ = b

To prove the equality for the third and fourth equations, we first need to show that

c00c
∗
01 = −c10c

∗
11 and c01c

∗
00 = −c11c

∗
10

This can be shown as follows:

c00c
∗
01 + c10c

∗
11 = ba∗ − eiϕa∗e−iϕb

= ba∗ − a∗b

= 0

Using this, we now compute the third and fourth equation.

For the third equation, c10 = c01λ10 + c11λ11:

c10 = c01(c11c
∗
00 + c10c

∗
01) + c11(c11c

∗
10 + c10c

∗
11)

= c01(c11c
∗
00 + c10c

∗
01) + c11(−c01c

∗
00 + −c00c

∗
01)

= c01c11c
∗
00 + c01c10c

∗
01 − c11c01c

∗
00 − c11c00c

∗
01)

= eiϕa∗a∗b− eiϕ|b|2b∗ − eiϕa∗a∗b− eiϕ|a|2b∗

= −eiϕb∗

For the fourth equation, c11 = c00λ10 + c10λ11:

c11 = c00(c11c
∗
00 + c10c

∗
01) + c10(c11c

∗
10 + c10c

∗
11)

= c00(c11c
∗
00 + c10c

∗
01) + c10(−c01c

∗
00 + −c00c

∗
01)

= c00c11c
∗
00 + c00c10c

∗
01 − c10c01c

∗
00 − c10c00c

∗
01

= eiϕ|a|2a∗ − eiϕab∗b∗ + eiϕ|b|2a∗ + eiϕab∗b∗

= eiϕa∗
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We have therefore proved that the two unitaries are equal. The Lugano circuit effectively
implements the Lugano process.

In the next chapter, we look at the implementation of the Shift states measurement using
the Lugano circuit.



34

Chapter 6

Shift States Distinguishability of
the Lugano Circuit

In this chapter, we present an analysis of a circuit that implements the Shift basis measure-
ment. To achieve this circuit, we first devise unitaries that realise the specific operations
used in the LLSBM. By incorporating theses unitaries into the Lugano circuit, we observe
that the resulting circuit exhibits interesting properties that enable a complete Shift basis
measurement.

We examine the characteristics of the circuit in terms of QNWE under LOCC. As a
result, we develop a LOCC protocol that allows for an almost complete measurement of
the Shift basis. Specifically, the protocol is capable of distinguishing between the first
six Shift states and detecting the presence of the last two states, although it does not
provide a distinction between the two final states.

6.1 Design of the Unitaries
We devise here unitaries that can be inserted into the Lugano circuit in order to implement
the Shift state measurement based on the LLSBM.

By analyzing the LLSBM, we make 3 observations:

• All three parties perform identical operations, we are thus looking for a single unitary
common to all three parties.

• A controlled Hadamard is performed on the Shift state based on the input forwarded
by the Lugano process. The Lugano process acts in such a way that the Hadamard
operates only when the Shift state is in a superposition state |+⟩ or |−⟩, preventing
such states to be measured in the computational basis which would consist in a loss
of information over the Shift state. Our unitary needs to keep the same properties
and must thus contain an Hadamard acting on the Shift state controlled by the
input of the Lugano process.

• A measurement in the computational basis is performed. However, we cannot use
this type of measurement since it is not a unitary operation. Instead, we can use a
CNOT gate.

Here is the unitary established based on the above discussion:
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Process • × Process

|S⟩ H •

|0⟩env ×

Table 6.1: Devised unitary. The first wire of the circuit links the process
input to the process output where the Shift state is denoted by |S⟩ and

|0⟩env is an environment blank state.

This unitary denoted by U can be decomposed in the product of 3 unitaries which corre-
sponds to the 3 different gates that compose it.

U1 =
(
|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗H

)
⊗I

U2 =I ⊗
(
|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X

)
U3 =|0⟩⟨0| ⊗ I ⊗ |0⟩⟨0| + |0⟩⟨1| ⊗ I ⊗ |1⟩⟨0| + |1⟩⟨0| ⊗ I ⊗ |0⟩⟨1| + |1⟩⟨1| ⊗ I ⊗ |1⟩⟨1|

The implemented unitary is then given by the product of the three.

U = U3 U2 U1

The development of this product gives as final expression

U = |000⟩⟨000| + |010⟩⟨011| + |001⟩⟨1 + 0| + |011⟩⟨1 − 1|
+ |100⟩⟨001| + |110⟩⟨010| + |101⟩⟨1 + 1| + |111⟩⟨1 − 0|

(6.1)

We have therefore designed a unitary based on the Shift basis measurement protocol using
the Lugano process. In next section, we implement this unitary in the Lugano circuit in
order to show that it indeed implements the Shift basis measurement.

6.2 Implementation of the Unitaries in the Lugano Circuit

Let’s insert the devised unitary (Table 6.1) into the gates UA, UB, UC , UCXU
†
C from

the Lugano circuit (Table 5.1). This results in the following circuit, which is named the
Niedercircuit.1 As we will see, the Niedercircuit implements the Shift basis measurement
when its input is in the blank state |000⟩ABC .

1 The choice of this name should be perceived as a joking response to the lack of appealing and
compact options for the "time-delocalized description of the Lugano circuit implementing the Shift
basis measurement". It is important to note that if other researchers were to develop a paper based on
these results, we strongly advise them to opt for a more descriptive and serious name. For instance,
we would recommend the name "Neithercircuit" because, as we will see later, a LOCC protocol based
on the Niedercircuit can’t distinguish between neither the |01+⟩ state nor the |01−⟩ state.
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|0⟩A • × • A

|S⟩A H •

|0⟩A
env

×

|0⟩B • × • × • • • • • • • B

|S⟩B H • H •

|0⟩B
env

× ×

|0⟩C • × • • • • × • • × C

|S⟩C H • • H H •

|0⟩C
env

× × ×

Table 6.2: Direct implementation of the devised unitaries into the
Lugano circuit. Named the Niedercircuit.

Before analysing the properties of the Niedercircuit, there are some simplification that
can be done for any input Shift states.

• The first controlled Hadamard is never performed, because its control qubit is always
|0⟩C .

• The second controlled Hadamard is never performed, because its control qubit is
always |0⟩B.

• The 17th, 18th and 19th unitaries (respectively controlled Hadamard, Toffoli gate
and controlled Hadamard) can be merged into one controlled Hadamard that is only
performed if the qubits corresponding to the wires |0⟩A and |0⟩B have the correct
values. Because if these gates are performed, then the last swap gate of the circuit
will also be performed, exchanging the qubit corresponding to the |0⟩C wire with
the qubit corresponding to the |0⟩C

env wire. As we will see later, we do not care
for this last wire, the only outputs of interest of the Niedercircuit is the three wires
which are labelled at the end of the circuit by A, B, C.

The simplified version of the Niedercircuit is given below, the analysis that will follow is
based on this simplified version but note that it is just as valid as for the above circuit in
the context of the Shift basis measurement.



Chapter 6. Shift States Distinguishability of the Lugano Circuit 37

|0⟩A • × • A

|S⟩A H •

|0⟩A
env

×

|0⟩B × • × • • • • • B

|S⟩B • H •

|0⟩B
env

× ×

|0⟩C × • • • × × C

|S⟩C • • H •

|0⟩C
env

× × ×

Table 6.3: Simplified version of the Niedercircuit

Now that we have the circuit, let’s investigate its behaviour for each Shift state.

6.3 Shift Basis Measurement of the Niedercircuit
In this section, we examine how the different Shift states evolve through the Niedercircuit.
To avoid overwhelming readers with too many details, we will focus on the crucial elements
and identify which of the seven unitary operations listed in Table 5.1 are performed for
each Shift state. Additionally, we will examine the states at the output of A, B, and C
in the Niedercircuit. For those who are interested in a more detailed understanding of
the circuit’s operation at each step, we recommend to use the quantum circuit simulator
provided in [16]. This tool can help visualize the circuit’s behavior for any input.

6.3.1 Shift State |000⟩

For this Shift state, all the circuits input are set to |0⟩. In this case, only the non-controlled
swap gates are performed, and the input states remain |0⟩. The output at A, B, C is
therefore |000⟩.

6.3.2 Shift State |111⟩

For this Shift state, only the unitaries U1, U2 and U4 are performed. This corresponds to
performing UA, UB, and UC once each. Each of the three unitaries generates a |1⟩ state
that remains unchanged until the outputs A, B, C. The output at A, B, C is thus |111⟩.
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6.3.3 Shift State | + 01⟩

For this Shift state, only the unitaries U1, U2, U3 and U4 are performed. More specifically,
the actions of U1 and U2 activate U3 which, in turn, triggers the controlled Hadamard in
U4. This Hadamard gate sends the Shift state part of A |+⟩A to the state |0⟩A, eliminating
the superposition. This behavior, where a controlled Hadamard is activated only to cancel
the superposition of a Shift state, repeats for the subsequent Shift states as well. This
property of the Niedercircuit is crucial for implementing the complete distinguishability of
the Shift basis, as we will discuss further. The output A, B, C is |001⟩.

6.3.4 Shift State | − 01⟩

The Niedercircuit behaves in the same way for this Shift state as for |+01⟩, with only the
unitaries U1, U2, U3 and U4 being performed. The only difference is that the Shift state
part of A |−⟩A outputs |1⟩ instead of |0⟩ at A. This difference from the output state |0⟩
to |1⟩ occurs for every Shift state containing a state in superposition, as the Shift state
changes from |+⟩ to |−⟩. The output A, B, C is |101⟩.

6.3.5 Shift States |1 + 0⟩ and |1 − 0⟩

For these two Shift states, only the unitaries U1, U5 and U6 are performed. The output
A, B, C is |100⟩ for |1 + 0⟩ and |110⟩ for |1 − 0⟩.

6.3.6 Shift States |01+⟩ and |01−⟩

These two last Shift states exhibit more complex behavior compared to the previous ones.
This complexity arises because the state |S⟩C is in a superposition which is not cancelled
by the Hadamard gate, unlike in the previous Shift states. The output of U1 is in a
superposition that spreads throughout the entire circuit, resulting in a superposition of
operations of the unitaries that are both performed and not performed simultaneously.

These two Shift states are the only ones for which all the unitaries are performed, requiring
the entire Niedercircuit to distinguish between them. Moreover, these are the only states
for which the most complex unitary U7 is performed, which cancels out any remaining
superposition in the circuit.

The output A, B, C is |010⟩ for |01+⟩ and |011⟩ for |01−⟩.

6.3.7 Summary

Each Shift state given as input to the Niedercircuit corresponds to a unique state of
the computational basis, which is determined by the outputs A, B, C. This one-to-one
correspondence is presented in the table below.

Shift State Output State Shift State Output State
|000⟩ |000⟩ |1 + 0⟩ |100⟩
|111⟩ |111⟩ |1 − 0⟩ |110⟩

| + 01⟩ |001⟩ |01+⟩ |010⟩
| − 01⟩ |101⟩ |01−⟩ |011⟩

Table 6.4: Correspondences between the Shift states and the outputs
of the Niedercircuit.
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It is notable that these correspondences are the same as the ones from the circuits in
Figure 4.2 and Table 4.2.

As we have just seen, the Niedercircuit implements quantum operation in its Shift basis
measurement. The next sections investigate where this quantumness takes place and the
possibility to replace it with LOCC.

6.4 LOCC Protocol to Distinguish the Shift Basis
We investigate here how we could use the properties of the Niedercircuit to establish a
LOCC protocol to distinguish the Shift basis. We start by presenting a protocol that
allows to distinguish between the six first Shift states. We then look at how we could
extend this protocol for the two last Shift states and discuss why it’s impossible to obtain
a complete distinguishability.

6.4.1 LOCC Protocol for the six First Shift states

We have devised a LOCC protocol for distinguishing the first six Shift states given by:

{|000⟩, |111⟩, | + 01⟩, | − 01⟩, |1 + 0⟩, |1 − 0⟩, |01+⟩, |01−⟩}

This protocol involves Alice, Bob, and Charlie, who communicate with each other clas-
sically and each possesses a part of an unknown Shift state. Each in turn, the order of
which is determined by what they communicate to each other, must perfom on their part
of the Shift state the unitary from Table 6.1 where they trigger the Hadamard gate based
on the received communication. After completing their unitary, they measure the output
state (the state at the end of the top wire of the unitary) in the computational basis and
communicate the measurement result to each other. The protocol can be broken down
into two steps.

First step

Charlie acts first and applies the unitary to his part of the unknown Shift state and
performs the measurement in the computational basis. Since Charlie’s Shift state is always
|0⟩ or |1⟩, his measurement outcome is also always |0⟩ or |1⟩. Charlie then communicates
his measurement result to Alice and Bob.

At the end of this step, the parties can already determine a subset of the Shift basis to
which the unknown Shift state belongs, as indicated in Table 6.5.

Shift states |000⟩ |111⟩ | + 01⟩ | − 01⟩ |1 + 0⟩ |1 − 0⟩

Charlie’s result 0 1 1 1 0 0

Table 6.5: Result of the first step of the protocol.

The next step depends on Charlie’s result.

Second step if Charlie communicates 0

If Charlie communicates 0 then the parties know that the Shift state they are trying to
distinguish belongs to {|000⟩, |1 + 0⟩, |1 − 0⟩}. In this case, Alice must act second and
applies the unitary, measures her output and communicates her outcome. Knowing her
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outcome, the subset to which the unknown Shift state belongs shrinks as indicated in
Table 6.6.

Shift states |000⟩ |1 + 0⟩ |1 − 0⟩

Alice’s result 0 1 1

Table 6.6: Result of Alice’s measurement.

If the result is 0, the protocol can stop here and the parties know that the Shift state is
|000⟩.

Otherwise, it remains to distinguish between |1 + 0⟩ and |1 − 0⟩. For this, we need Bob
to act by performing his unitary but unlike the two previous operations, he must trigger
the Hadamard that is in his unitary to prevent the measurement of a superposition state.
This result in Table 6.7.

Shift states |1 + 0⟩ |1 − 0⟩

Bob’s result 0 1

Table 6.7: Result of Bob’s measurement.

We have thus made a Shift basis measurement in the case where Charlie communicates
0. A symmetric version of this second step happens if Charlie communicates 1.

Second step if Charlie communicates 1

In this case, the parties are trying to distinguish between {|111⟩, | + 01⟩, | − 01⟩} In a
symmetrical way to the previous case, Bob must act first which result in Table 6.8.

Shift states |111⟩ | + 01⟩ | − 01⟩

Bob’s result 1 0 0

Table 6.8: Result of Bob’s measurement.

It remains to distinguish between | + 01⟩ and | − 01⟩. For this, Alice acts second and
triggers the Hadamard in her unitary which result in Table 6.9.

Shift states | + 01⟩ | − 01⟩

Alice’s result 0 1

Table 6.9: Result of Alice’s measurement.

We have therefore a LOCC protocol which allows to distinguish perfectly the first six
Shift states. But how does the last two states react to this protocol ? Could we modify
the protocol to realize a complete measurement of the Shift basis ? These questions are
investigated in next subsection.
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6.4.2 Protocol on the last two Shift states

First, Charlie applies his unitary. His CNOT thus acts on | + 0⟩ or | − 0⟩, resulting
in a Bell state which is respectively maximally correlated or maximally anticorrelated.
Charlie’s measurement will collapse the state to either |00⟩ or |11⟩, both with equal prob-
ability. Since the same collapse occurs for |+⟩C and |−⟩C , the protocol loses information
that could distinguish between them. Therefore, there is a 50-50 chance that Charlie
communicates 0 or 1 for both Shift states.

Charlie communicates 0

If Charlie communicates 0, then Alice acts second and measures 0 with certainty. At
this point, the parties know they are trying to distinguish between the Shift states
|000⟩, |01+⟩, |01−⟩. Alice then communicates her result of 0 to Bob.

Previously, if Alice communicated 0, the parties could stop the protocol since they knew
with certainty that the Shift state was |000⟩. However, since the protocol now considers
the entire Shift basis, the parties must continue. Bob applies his unitary without triggering
the Hadamard gate2 and measures his qubit. If he measures 0, the parties know the Shift
state is |000⟩. If he measures 1, the Shift state could be either |01+⟩ or |01−⟩.

Charlie communicates 1

And inversely if Charlie communicates 1, then Bob acts and measures 1 with certainty. At
this point, the parties know they are trying to distinguish between the subset {|111⟩, |01+⟩, |01−⟩}.
Bob then communicates his result of 1 to Alice.

Previously, if Bob communicated 1, the parties could stop the protocol since they knew
with certainty that the Shift state was |111⟩. However, since the protocol now considers
the entire Shift basis, the parties must continue. Alice applies her unitary without trig-
gering the Hadamard gate and measures her qubit. If she measures 1, the parties know
the Shift state is |111⟩. If she measures 0, the Shift state could be either |01+⟩ or |01−⟩.

Summary

To summarise, the measurement result of the protocol when the unknown Shift state is
|01+⟩ or |01−⟩, is 0 for Alice, 1 for Bob and either 0 or 1 for Charlie. This measurement
result only occurs for these two Shift states. The result of the protocol for each Shift
state is given in the table below.

Shift State Measurement Results Shift State Measurement Results
|000⟩ 000 |1 + 0⟩ 100
|111⟩ 111 |1 − 0⟩ 110

| + 01⟩ 001 |01+⟩ 010 or 011
| − 01⟩ 101 |01−⟩ 010 or 011

Table 6.10: Result of the protocol.

The presented protocol provides a way to almost completely distinguish the Shift basis
by differentiating the first six Shift states and detecting the presence of the last two
Shift states, even though they cannot be perfectly distinguished from each other. This
2 Bob activates it if Alice communicates 1 and does not activate it if Alice communicates 0
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limitation is expected due to QNWE. In practice, this limitation occurs at U1, where a
measurement of the |+⟩ or |−⟩ Shift state leads in a loss of information, rendering the
two states indistinguishable. Changing the order of operations among the parties would
not resolve the problem, as there will always be two Shift states that, once shared among
the parties, are in a superposition state. Regardless of who acts first, there will always be
two Shift states for which the first acting party has to collapse a state in superposition,
resulting in the indistinguishability between the two states.

Despite not achieving perfect distinguishability, this protocol is still valuable for cases
where non-perfect measurements are acceptable.

In the next Chapter, we will investigate the conversion of the Lugano circuit with the
implemented unitaries to an acausal circuit described by the process matrix formalism,
with the goal to identify where the trade-off between complete distinguishability and
indefinite causal order happens.
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Chapter 7

Description of the Lugano Circuit
in the Process Matrix Formalism

The Niedercircuit is designed to reproduce the LLSBM protocol, which enable a complete
Shift basis distinguishability at the expense of abandoning definite causal order. Therefore,
we believe that by relinquishing the definite causal order for the Niedercircuit, we can
create a circuit that allows for perfect distinguishability of the Shift states. By analyzing
the behavior of this circuit, we hope to gain insight into the point at which indefinite
causal order leads to complete distinguishability.

Instead of working directly with the Niedercircuit, our approach for this conversion is to
take back the circuit that implements the general TDS description of the Lugano process,
as shown in Figure 3.9. This decision is based on the time-consuming and complex nature
of the correspondence calculation, which can be simplified by utilizing the aforementioned
circuit. Because certain calculation steps presented in [34] can be leveraged.

Upon examining Figure 3.8, we observe that obtaining the acausal circuit corresponding
to the Lugano process requires the composition of four unitaries UA, UB, R′, R(UC).

We already possess the expressions for UA, UB, and UC , as they are the unitaries we
designed in Table 6.1. The expression for R′ is provided in equation 30 of the supple-
mentary note in [34]. Since it does not depend on the unitaries we devised, we can utilize
this expression as is. The remaining task is to calculate R(UC).

7.1 R(UC) computation
The expression of R(UC) for the Lugano process is given in equation 29 of supplementary
note of [34]:

|R(UC)⟩⟩CIOC′
IOY Ȳ ZZ̄Q̄1Q̄′

2

=
(
|U †

1⟩⟩CIZPOABO ∗ (|I⟩⟩AOT̄ ′
1 ⊗ |I⟩⟩BOT̄ ′

2)
)

∗ |ω1(UC)⟩⟩POC′
I T̄1E1Q̄1 ∗ |ω◦

2(UC)⟩⟩T̄ ′
1E1T̄2E2

∗ |ω3(UC)⟩⟩T̄ ′
2E2Q̄′

2FIC′
O ∗

(
(|I⟩⟩T̄1AI ⊗ |I⟩⟩T̄2BI ) ∗ |U †

2⟩⟩ABIFICOZ̄
)

⊗ |0⟩Ȳ ⊗ |0⟩Y

+
(
|U †

1⟩⟩CIZPOABO ∗ (|I⟩⟩BOT̄ ′
1 ⊗ |I⟩⟩AOT̄ ′

2)
)

∗ |ω1(UC)⟩⟩POC′
I T̄1E1Q̄1 ∗ |ω•

2(UC)⟩⟩T̄ ′
1E1T̄2E2

∗ |ω3(UC)⟩⟩T̄ ′
2E2Q̄′

2FIC′
O ∗

(
(|I⟩⟩T̄1BI ⊗ |I⟩⟩T̄2AI ) ∗ |U †

2⟩⟩ABIFICOZ̄
)

⊗ |1⟩Ȳ ⊗ |1⟩Y

The corresponding circuit is



Chapter 7. Description of the Lugano Circuit in the Process Matrix Formalism 44

Figure 7.1: Circuit representation of R(UC) for the Lugano process.
As given in supplementary Figure 11 of [34].

Inserting our unitary UC given in Table 6.1 gives

Figure 7.2: Circuit representation of R(UC) with UC given by Table
6.1.

We will first compute each elements of R(UC) and then take the composition of all of
them.

7.1.1
(
|U †

1⟩⟩CIZPOABO ∗ (|I⟩⟩AOT̄ ′
1 ⊗ |I⟩⟩BOT̄ ′

2)
)

computation

U1 ∈ L(HP123ABO , HCIZ) is given in equation 37 of supplementary note of [34]:

U1 =
∑

p1,p2,p3
ao,bo

|p3 ⊕ āobo⟩CI |p1, p2, ao, bo⟩Z ⟨p1, p2, p3|P123 ⟨ao, bo|AoBo

Its conjugate transpose U †
1 ∈ L(HCIZ , HP123ABO ) is given by

U †
1 =

∑
p1,p2,p3

ao,bo

|p1, p2, p3⟩P123 |ao, bo⟩AoBo ⟨p3 ⊕ āobo|CI ⟨p1, p2, ao, bo|Z

We need to compose the CJ pure representation of U1 with identity channels that changes
the Hilbert spaces on which U1 acts. This can be computed without using the link product:

=
∑

p1,p2,p3
ao,bo

|p1, p2, p3⟩P123 |ao, bo⟩T̄ ′
1T̄ ′

2 ⟨p3 ⊕ āobo|CI ⟨p1, p2, ao, bo|Z
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|U †
1⟩⟩CIZPOAOBO ∗ (|I⟩⟩AOT̄ ′

1 ⊗ |I⟩⟩BOT̄ ′
2) =

∑
c,z1234

U †
1 |c, z1234⟩CIZ ⊗ |c, z1234⟩CIZ

(7.1)
=

∑
c,z1234

p123,ao,bo

|p1, p2, p3⟩P123 |ao, bo⟩T̄ ′
1T̄ ′

2⟨p3 ⊕ āobo|CI ⟨p1, p2, ao, bo|Z |c, z1, z2, z3, z4⟩CIZ |c, z1, z2, z3, z4⟩CIZ

=
∑

c,z1234

|z1, z2, c⊕ z̄3z4⟩P123 |c, z1234⟩CIZ

where we have used p3 ⊕ z̄3z4 = c ⇐⇒ p3 = z̄3z4 ⊕ c.

7.1.2
(
(|I⟩⟩T̄1BI ⊗ |I⟩⟩T̄2AI ) ∗ |U †

2⟩⟩ABIFICOZ̄
)

computation

U2 ∈ L(HCOZ̄ , HABIF123) is given in equation 37 of supplementary note of [34]:

U2 =
∑

ao,bo,co
p1,p2

|p1 ⊕ b̄oco, p2 ⊕ c̄oao⟩AIBI |ao, bo, co⟩F123⟨co|Co⟨p1, p2, ao, bo|Z̄

Using a similar reasoning as for U1 we obtain(
(|I⟩⟩T̄1BI ⊗ |I⟩⟩T̄2AI ) ∗ |U †

2⟩⟩ABIFICOZ̄
)

(7.2)

=
∑

f123,p12

|p2 ⊕ f̄3f1, p1 ⊕ f̄2f3, f123⟩T̄1T̄2F123 |f3⟩Co |p1, p2, f1, f2⟩Z̄

7.1.3 |ω1(UC)⟩⟩ computation

ω1(Uc) ∈ L(HP123C′
I , H T̄1E1Q̄1γ) is given in equation 33 of supplementary note of [34]:

ω1(Uc) = IP1→T̄1 ⊗ IP2→E1 ⊗
(
(|0⟩Q̄1⟨0|Co ⊗ IC′

o→γ)Uc(IP3→CI ⊗ IC′
I )
)

+ IP1→E1 ⊗ IP2→T̄1 ⊗
(
(|1⟩Q̄1⟨1|Co ⊗ IC′

o→γ)Uc(IP3→CI ⊗ IC′
I )
)

where we need to insert our unitary UC given in equation 6.1. This insertion gives (by
skipping several steps)

ω1(Uc) =
∑

p123,c′
12

|p123⟩P123C′
I ⊗

(
|+⟩Q̄1(|01⟩γ + |11⟩γ) + |c′

1 ⊕ c′
2⟩Q̄1 |c′

10⟩γ
)

7.1.4 |ω◦
2(UC)⟩⟩ and |ω•

2(UC)⟩⟩ computation

For the Lugano process, ω◦
2 and ω•

2 do not depend on UC , these are given in equation 34
and 35 of supplementary note of [34]

ω◦
2 = |0⟩E2⟨0|T̄ ′

1 ⊗ IE1→T̄2 + |1⟩E2⟨1|T̄ ′
1 ⊗

(
|0⟩T̄2⟨1|E1 + |1⟩T̄2⟨0|E1

)
ω•

2 = |1⟩E2⟨1|T̄ ′
1 ⊗ IE1→T̄2 + |0⟩E2⟨0|T̄ ′

1 ⊗
(
|0⟩T̄2⟨1|E1 + |1⟩T̄2⟨0|E1

)
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7.1.5 |ω3(UC)⟩⟩ computation

ω3(Uc) ∈ L(H T̄ ′
2EQ̄′

2γ , HF123C′
O ) is given in equation 36 of supplementary note of [34]:

ω3(Uc) =(
|000⟩F123⟨000|T̄ ′

2E2Q̄′
2 + |001⟩F123⟨011|T̄ ′

2E2Q̄′
2 + |100⟩F123⟨010|T̄ ′

2E2Q̄′
2

+ |101⟩F123⟨101|T̄ ′
2E2Q̄′

2 + |110⟩F123⟨110|T̄ ′
2E2Q̄′

2 + |111⟩F123⟨111|T̄ ′
2E2Q̄′

2

)

+ |01⟩F12⟨100|T̄ ′
2E2Q̄′

2 ⊗
((
ICO→F3 ⊗ IC′

O

)(
UC

(
|0⟩CI ⟨1|CI + |1⟩CI ⟨0|CI

)
U †

C

)(
|0⟩CO ⊗ Iγ→C′

O

))

+ |01⟩F12⟨011|T̄ ′
2E2Q̄′

2 ⊗
((
ICO→F3 ⊗ IC′

O

)(
UC

(
|0⟩CI ⟨1|CI + |1⟩CI ⟨0|CI

)
U †

C

)(
|1⟩CO ⊗ Iγ→C′

O

))

After UC insertion and going to the pure CJ representation we obtain

|ω3(UC)⟩⟩ =
∑

t2,e2,q2,γ12

|t2, e2, q2, γ12⟩T̄ ′
2EQ̄′

2γ

⊗
((

⟨000|t2, e2, q2⟩|000⟩F123 + ⟨001|t2, e2, q2⟩|001⟩F123 + ⟨010|t2, e2, q2⟩|100⟩F123

+ ⟨101|t2, e2, q2⟩|101⟩F123 + ⟨110|t2, e2, q2⟩|110⟩F123 + ⟨111|t2, e2, q2⟩|111⟩F123
)
|γ12⟩C′

O

+ 1√
2

⟨100|t2, e2, q2⟩|01⟩F12
(
|0⟩F3 |γ1, γ̄2⟩C′

O + |1⟩F3 |γ̄1, γ̄2⟩C′
O

)
+ 1√

2
⟨011|t2, e2, q2⟩|01⟩F12

(
|0⟩F3 |γ̄1, γ̄2⟩C′

O + |1⟩F3 |γ1, γ̄2⟩C′
O

)

Now that we have computed all the vectors, we can compose them.

7.1.6 Vectors Composition

We compute here only the first term of the addition in the equation of |R(UC)⟩⟩, the
second term only differs by the term |ω2⟩⟩ and is thus computed in a similar way. The
first term |R(UC)⟩⟩ can be decomposed into four compositions.

First composition

Let’s set |1⟩ =
(
|U †

1⟩⟩CIZPOABO ∗ (|I⟩⟩AOT̄ ′
1 ⊗ |I⟩⟩BOT̄ ′

2)
)

for which we have already
computed the expression in Section 7.1.1. With |1⟩ ∈ HCIZP123T̄ ′

1T̄ ′
2 We compute here

|2⟩ = |1⟩ ∗ |ω1(UC)⟩⟩POC′
I T̄1E1Q̄1 The relationship between the Hilbert spaces of two

vectors |1⟩ and |ω1(UC)⟩⟩ are

|1⟩ ∩ |ω1(UC)⟩⟩ = HCIZT̄ ′
1T̄ ′

2

|1⟩ \ |ω1(UC)⟩⟩ = HP123

|ω1(UC)⟩⟩ \ |1⟩ = HC′
I T̄1E1Q̄1γ
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The resulting vector |2⟩ is thus in HCIC′
IZT̄ ′

1T̄ ′
2T̄1E1Q̄1γ

It is given by

|2⟩ =
∑

c,c12,z1234

|c, c′
12, z1234, z3, z4⟩CIC′

IZT̄ ′
1T̄ ′

2

(
|00⟩γ + |10⟩γ +

√
2|01⟩γ +

√
2|11⟩γ

)
(

|0⟩Q̄1 |z12⟩T̄1E1 + |1⟩Q̄1 |z12⟩E1T̄1

)

Third composition

We compute here |3⟩ = |2⟩ ∗ |ω◦
2⟩⟩T̄ ′

1E1T̄2E2 The relationship between the Hilbert spaces
of two vectors |2⟩ and |ω◦

2⟩⟩ are

|2⟩ ∩ |ω◦
2⟩⟩ = HCIC′

IZT̄ ′
2T̄1Q̄1γ

|2⟩ \ |ω◦
2⟩⟩ = H T̄ ′

1E1

|ω◦
2⟩⟩ \ |2⟩ = H T̄2E2

The resulting vector |3⟩ is thus in H∈CIC′
IZT̄ ′

2T̄1Q̄1γT̄2E2

It is given by

|3⟩ =
∑

c,c12,z1234

|c, c′
12, z1234, z4, z3⟩CIC′

IZT̄ ′
2E2

(
|00⟩γ + |10⟩γ +

√
2|01⟩γ +

√
2|11⟩γ

)
(

|0⟩Q̄1 |z1, z3 ⊕ z2⟩T̄1T̄2 + |1⟩Q̄1 |z2, z3 ⊕ z1⟩T̄1T̄2

)

Fourth composition

We compute here |4⟩ = |3⟩∗|ω3(Uc)⟩⟩T̄ ′
2E2Q̄′

2γF123C′
O The relationship between the Hilbert

spaces of the two vectors |3⟩ and |ω3⟩⟩ are

|3⟩ ∩ |ω3(Uc)⟩⟩ = HCIC′
IZT̄1Q̄1T̄2

|3⟩ \ |ω3(Uc)⟩⟩ = HE2T̄ ′
2γ

|ω3(Uc)⟩⟩ \ |3⟩ = HQ̄′
2F123C′

O

The resulting vector |4⟩ is thus in HCIC′
IZT̄1Q̄1T̄2Q̄′

2F123C′
O
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It is given by

|4⟩ =
∑

c,c12,z1234
q2,γ12

|c, c′
12, z1234, q2⟩CIC′

IZQ̄′
2(

√
2γ2 + γ̄2)

⊗
(

|0⟩Q̄1 |z1, z3 ⊕ z2⟩T̄1T̄2 + |1⟩Q̄1 |z2, z3 ⊕ z1⟩T̄1T̄2

)

⊗
((

⟨000|z4, z3, q2⟩|000⟩F123 + ⟨001|z4, z3, q2⟩|001⟩F123 + ⟨010|z4, z3, q2⟩|100⟩F123

+ ⟨101|z4, z3, q2⟩|101⟩F123 + ⟨110|z4, z3, q2⟩|110⟩F123 + ⟨111|z4, z3, q2⟩|111⟩F123
)
|γ12⟩C′

O

+ 1√
2

⟨100|z4, z3, q2⟩|01⟩F12
(
|0⟩F3 |γ1, γ̄2⟩C′

O + |1⟩F3 |γ̄1, γ̄2⟩C′
O

)
+ 1√

2
⟨011|z4, z3, q2⟩|01⟩F12

(
|0⟩F3 |γ̄1, γ̄2⟩C′

O + |1⟩F3 |γ1, γ̄2⟩C′
O

)

Fifth composition

Let’s set |5⟩ =
(
(|I⟩⟩T̄1AI ⊗ |I⟩⟩T̄2BI ) ∗ |U †

2⟩⟩ABIF123COZ̄
)

⊗|0⟩Ȳ ⊗|0⟩Y for which we have
already computed the expression in Section 7.1.2. We compute here the final expression
of the first term of the addition in R(UC) which is equal to |4⟩ ∗ |5⟩

The relationship between the Hilbert spaces of the two vectors |4⟩ and |5⟩ are

|4⟩ ∩ |5⟩ = HCIC′
IZQ̄1Q̄′

2C′
O

|4⟩ \ |5⟩ = H T̄1T̄2F123

|5⟩ \ |4⟩ = HCOZ̄

The resulting vector |5⟩ is thus in HCIC′
ICOC′

OQ̄1Q̄′
2ZZ̄ and is given as the first term of

the addition in next section.

7.1.7 Final Result

The final computed value of |R(UC)⟩⟩ is given below as an addition of two terms where
the first term was calculated in previous section and the second was obtained with a
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similar computation. |R(UC)⟩⟩CC′
IOY Ȳ ZZ̄Q̄1Q̄′

2 =

∑
c,c′

12,z1234,q2
γ12,p12,f123

|c, c′
12, z1234, q2⟩CC′

IZQ̄′
2 |f3⟩Co |p12, f12⟩Z̄ |00⟩Y Ȳ (γ2

√
2 + γ̄2)

(
⟨p1 ⊕ f̄2f3|z1⟩⟨p2 ⊕ f̄3f1|z3 ⊕ z2⟩|0⟩Q̄1 + ⟨p1 ⊕ f̄2f3|z2⟩⟨p2 ⊕ f̄3f1|z3 ⊕ z1⟩|1⟩Q̄1

)
((

⟨000|z4z3q2⟩⟨f123|000⟩ + ⟨001|z4z3q2⟩⟨f123|001⟩ + ⟨010|z4z3q2⟩⟨f123|100⟩

+ ⟨101|z4z3q2⟩⟨f123|101⟩ + ⟨110|z4z3q2⟩⟨f123|110⟩ + ⟨111|z4z3q2⟩⟨f123|111⟩
)

|γ12⟩C′
O

+ 1√
2

⟨100|z4z3q2⟩⟨f12|01⟩
(

⟨f3|0⟩|γ1, γ̄2⟩C′
o + ⟨f3|1⟩|γ̄1, γ̄2⟩C′

o

)

+ 1√
2

⟨011|z4z3q2⟩⟨f12|01⟩
(

⟨f3|0⟩|γ̄1, γ̄2⟩C′
o + ⟨f3|1⟩|γ1, γ̄2⟩C′

o

))

+
∑

c,c′
12,z1234,q2

γ12,p12,f123

|c, c′
12, z1234, q2⟩CC′

IZQ̄′
2 |f3⟩Co |p12, f12⟩Z̄ |11⟩Y Ȳ (γ2

√
2 + γ̄2)

(
⟨p2 ⊕ f̄3f1|z1⟩⟨p1 ⊕ f̄2f3|z4 ⊕ z2⟩|0⟩Q̄1 + ⟨p2 ⊕ f̄3f1|z2⟩⟨p1 ⊕ f̄2f3|z4 ⊕ z1⟩|1⟩Q̄1

)
((

⟨000|z4z3q2⟩⟨f123|000⟩ + ⟨001|z4z3q2⟩⟨f123|001⟩ + ⟨010|z4z3q2⟩⟨f123|100⟩

+ ⟨101|z4z3q2⟩⟨f123|101⟩ + ⟨110|z4z3q2⟩⟨f123|110⟩ + ⟨111|z4z3q2⟩⟨f123|111⟩
)

|γ12⟩C′
O

+ 1√
2

⟨100|z4z3q2⟩⟨f12|01⟩
(

⟨f3|0⟩|γ1, γ̄2⟩C′
o + ⟨f3|1⟩|γ̄1, γ̄2⟩C′

o

)

+ 1√
2

⟨011|z4z3q2⟩⟨f12|01⟩
(

⟨f3|0⟩|γ̄1, γ̄2⟩C′
o + ⟨f3|1⟩|γ1, γ̄2⟩C′

o

))

This final result appears to be of significant size and complexity, making its interpretation
challenging. The result is not diagonal in the computational basis, showing that it is not
a classical transformation.

We believe that composing this result with the unitary transformation labeled as R′ in
Figure 3.8 would yield a classical process. If this is indeed the case, we expect that the
composition of the four unitaries, UA, UB, R′, and R(UC), would result in a unitary
transformation that is diagonal in the computational basis and that would enable the
accomplishment of the complete LOCC Shift basis measurement.

To gain further insights, it would be necessary to conduct investigations into this com-
position. The conclusion in next chapter provides more detailed explanations regarding
these additional investigations.
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Chapter 8

Conclusion and Further
Investigations

The aim of this master’s thesis is to investigate the behavior of the implementation of
the Shift basis measurement protocol exploiting the Lugano process into a temporally
ordered circuit implementing this process. This was done in previous chapters by first
demonstrating the equivalence of the Lugano circuit with the Lugano process. Subse-
quently, a unitary inspired by the Shift basis measurement protocol was designed and
inserted into the Lugano circuit, resulting in the Niedercircuit. It was shown that this
Niedercircuit allows for complete distinction of the Shift states, and its operation enabled
to design a LOCC protocol that allows to distinguish the six first Shift states and to know
if we are in the presence of the last two without being able to distinguish them. Following
this, an attempt was made to identify the trade-off between complete distinguishability
under LOCC and indefinite causal order. This was achieved by computing the unitary
R(UC), which exhibits significant complexity and is not diagonal in the computational
basis.

The next logical steps in order to understand where the trade between QNWE and causal
order would be to compose the four unitaries, UA, UB, R′, and R(UC) to obtain an
acausal circuit. Analyzing this circuit, particularly in terms of the capabilities that the
individual unitaries cannot achieve separately, may provide the key to understanding this
phenomenon.

A research question that formulates these further explorations is "Does the composition
of the four unitaries result in a classical behavior ? If so, what causes this transition to
classicality ? What is the fundamental step that corresponds to the trade-off between
indefinite causal order and QNWE ?".

The exploration of these questions is left for future research endeavors.
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Appendix A

Appendices to Chapter 1

A.1 Spacetime Interval between two Events
In this appendix, we give some insights into the concepts of causal relationships between
events in spacetime by defining the notion of spacetime interval between two events
and interpreting it.

Let’s consider two events that occur at (x1, y1, z1, t1) and (x2, y2, z2, t2). We define the
spacetime interval between these two events:

∆σ2 := −(c∆t)2 + ∆x2 + ∆y2 + ∆z2

Using Pythagoras’ theorem, one can see that ∆x2 +∆y2 +∆z2 corresponds to the spatial
distance separating the two events squared, let’s denote it by d2.

⇐⇒ ∆σ2 := −c2∆t2 + d2

Where c∆t is the distance that light travels in that interval of time.

The space time interval thus compares, for the two events, the spatial distance with the
light speed distance.

As nothing (no object, no information) can travel faster than light, any event’s influence
can only affect another if it can be transmitted between them without exceeding the
speed of light. The light cone is defined as the boundary within which an event can
cause another. In other words, causal influence between events is contained within their
light cones.

From this last consideration, the space time interval can be used to cast light on the
causality relations between the events:

• If ∆σ2 < 0, then d2 < c2∆t2 : The spatial distance is less than the light speed
distance, the interval is called time-like. In this case, there exists a reference frame
in which both events occur in the same place (for example by being in translation
in a direction going from one event to the other at a speed v = d

∆t < c). The
information of the realization of an event can reach the other, they are each in the
light cone of the other, thus a causal relation can exist between the two.

• If ∆σ2 = 0, then d2 = c2∆t2 : The spatial distance is equal to the light speed
distance, the interval is called light-like. This is an intermediate case where the two
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events are each on the surface of the light cone of the other, a causal relation can
exist between the two only if the information propagates at a speed c.

• If ∆σ2 > 0, then d2 > c2∆t2 : The spatial distance is greater than the light speed
distance, the interval is called space-like. In this case, the events are spatially too
far apart to have caused or influenced the other. They are each outside of the light
cone of the other.

Let’s note that the spacetime interval is an invariant for any inertial reference frame, in
the same way that ∆s2 = ∆x2 + ∆y2 + ∆z2 is invariant in Newtonian mechanics.

In general relativity, as gravity deflects and delays light signals, the events’ light cones are
deformed, that’s why the causal strucuture is said to be dynamic.
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Appendix B

Appendices to Chapter 2

B.1 Linear Operator
A linear operator A is a mapping between two vector spaces1 A : HX → HY (de-
noted by A ∈ L(HX , HY )) that preserves the operations of vector addition and scalar
multiplication

A : |ψ⟩ =
∑

i

ψi|i⟩ −→ A(|ψ⟩) = A(
∑

i

ψi|i⟩) =
∑

i

ψiA(|i⟩)

Where A(|ψ⟩) is commonly denoted by A|ψ⟩.

A linear operator can be described using its matrix representation. This corresponds to
considering the linear operator as a m = dX by n = dY matrix mapping vectors from HX

to HY through matrix multiplication. This matrix representation depends on the choice
of basis. Let |xi⟩ and |yj⟩ be two bases of HX and HY respectively, then the matrix
elements of the operator are given by ⟨yj |A|xi⟩.

A =


⟨y1|A|x1⟩ ⟨y1|A|x2⟩ . . . ⟨y1|A|xn⟩

⟨y2|A|x1⟩ . . . ...
... . . . ...

⟨ym|A|x1⟩ . . . . . . ⟨ym|A|xn⟩


m×n

Such that if A|ψ⟩ = |ϕ⟩ with |ψ⟩ =
∑

i ψi|xi⟩ ∈ HX and |ϕ⟩ =
∑

i ϕi|yi⟩ ∈ HY then
⟨y1|A|v1⟩ ⟨y1|A|x2⟩ . . . ⟨y1|A|xn⟩

⟨y2|A|v1⟩ . . . ...
... . . . ...

⟨ym|A|x1⟩ . . . . . . ⟨ym|A|xn⟩


m×n


ψ1
ψ2
...
ψn


n×1

=


ϕ1
ϕ2
...
ϕm


m×1

A linear operator A is said to be defined on a vector space HX when A : HX → HX .
1 Hilbert spaces in the context of this thesis.
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B.2 Trace
The trace of an operator A is defined as the sum of the diagonal elements of A with
respect to an arbitrary orthonormal basis {|i⟩}.

tr(A) =
∑

i

⟨i|A|i⟩

A significant property of the trace is that it is invariant under a change of basis.

B.2.1 Partial trace

Given a linear operator A ∈ L(HXY ), the partial trace of A over HX is a way of
extracting information about the behavior of A on HY alone. It is given by

trX(A) =
∑

i

⟨iX |A|iX⟩

Or more explicitly by

trX(A) =
∑

i

(⟨iX | ⊗ IY )A(|iX⟩ ⊗ IY )



55

Appendix C

Appendices to Chapter 5

C.1 Numerical Computation of the Total Unitary of the Lugano
Circuit

The following Python code allows to compute the total unitary that the Lugano circuit
implements. The package SympPy used here allows to manipulate tensor products of
matrices with symbolic variables.

1 import sympy as sp
2 import sympy. physics . quantum as spq
3

4 # Initialisation of the different variables
5 a00 , a01 , phi_a = sp. symbols (’a00 a01 phi_a ’)
6 b00 , b01 , phi_b = sp. symbols (’b00 b01 phi_b ’)
7 c00 , c01 , phi_c = sp. symbols (’c00 c01 phi_c ’)
8

9 # Representation of the 3 unitaries in the computational basis
10 a10 = - sp.exp(sp.I * phi_a) * sp. conjugate (a01)
11 a11 = sp.exp(sp.I * phi_a) * sp. conjugate (a00)
12 Ua = sp. Matrix ([[ a00 , a01], [a10 , a11 ]])
13

14 b10 = - sp.exp(sp.I * phi_b) * sp. conjugate (b01)
15 b11 = sp.exp(sp.I * phi_b) * sp. conjugate (b00)
16 Ub = sp. Matrix ([[ b00 , b01], [b10 , b11 ]])
17

18 c10 = - sp.exp(sp.I * phi_c) * sp. conjugate (c01)
19 c11 = sp.exp(sp.I * phi_c) * sp. conjugate (c00)
20 Uc = sp. Matrix ([[ c00 , c01], [c10 , c11 ]])
21

22

23 eye = sp. Matrix ([[1 , 0], [0, 1]]) # Identity
24

25 U1 = spq. TensorProduct (spq. TensorProduct (eye , eye), Uc)
26

27 U2 = sp. Matrix ([[1 , 0, 0, 0], [0, b00 , 0, b01],
28 [0, 0, 1, 0], [0, b10 , 0, b11 ]])
29 U2 = spq. TensorProduct (eye , U2)
30

31 U3 = sp. Matrix ([[1 , 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
32 [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
33 [0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
34 [0, 0, 0, 0, 0, 0, 1, 0],
35 [0, 0, 0, 0, 0, 0, 0, 1]])
36

37 U4 = spq. TensorProduct (spq. TensorProduct (Ua , eye), eye)
38

39 U5 = sp. Matrix ([[1 , 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],



Appendix C. Appendices to Chapter 5 56

40 [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
41 [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0],
42 [0, 0, 0, 0, 1, 0, 0, 0],
43 [0, 0, 0, 0, 0, 0, 0, 1]])
44

45 U6 = sp. Matrix ([[ b00 , 0, b01 , 0], [0, 1, 0, 0],
46 [b10 , 0, b11 , 0], [0, 0, 0, 1]])
47 U6 = spq. TensorProduct (eye , U6)
48

49 # UcXUc
50 U7_00 = c01 * sp. conjugate (c00) + c00 * sp. conjugate (c01)
51 U7_01 = c01 * sp. conjugate (c10) + c00 * sp. conjugate (c11)
52 U7_10 = c11 * sp. conjugate (c00) + c10 * sp. conjugate (c01)
53 U7_11 = c11 * sp. conjugate (c10) + c10 * sp. conjugate (c11)
54

55 U7 = sp. Matrix ([[1 , 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
56 [0, 0, U7_00 , U7_01 , 0, 0, 0, 0],
57 [0, 0, U7_10 , U7_11 , 0, 0, 0, 0],
58 [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
59 [0, 0, 0, 0, 0, 0, 1, 0],
60 [0, 0, 0, 0, 0, 0, 0, 1]])
61

62 U = U7 * U6 * U5 * U4 * U3 * U2 * U1
63 sp. pprint (U)
64 sp. print_latex (U)
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